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Main Arguments

The same mechanisms now seem to determine the future of all major HEP
projects.: ILC, CLIC, Muon Collider, Neutrino Factory.

The details of these mechanisms are not being actively studied.
We have developed a model of breakdown and gradient limits in normal rf systems.
- We extend this model to SCRF systems.

New experiments can understand and improve SC gradient limits.
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Structures seem to fail in similar ways.

Normal metals Superconductors™
- Stresses from electric fields * Field emission heats cavity
exceed material tensile strength. before tensile stress limit.
E~76V/m - E~46V/m
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- Skin currents damage walls. * B> H., material goes normal
AT~ 100° B~180mT
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other mechanisms are active



How does this affect SCRF operation?

* Normal breakdown theory seems to determine much SCRF behavior.
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Our model of breakdown in normal systems

- 100 J stored energy

E Field Power density ~ 10°' W/m’

ress ~ 300 MPa

Fracture 1s the trigger Field emission produces plasma  Lossy plasma absorbs energy
80E 2=T dE/dx = { }/B s, (B) =exp (-bP)

Field emission is a diagnostic.
* An equilibrium state develops between the structure and the surface.

- Things depend on the available energy, U.



Spectra of field emitters (enhancement factors)
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We have measured s;(8), during operation, with a Be window.

We looked at individual emitters, and measured spectra produced in discharges

10

F T T T T
o
~ 1 — =3
Q o ]
5
2
7]
= [ ] o o
O
Q 0.1 - ) -
-~ I:‘;III’J“E:‘» ”'
255 H},l\}-ﬂs f J‘ f '1!".
160 ﬂ,’ \ ®
82 001 PR S R S NN ST ST ST T N T ST ST R N S S S
0 50 100 150 200

Enhancement factor, 3

The spectrum of enhancements seems to be a "Maxwell-Boltzmann" like
exponential.

We assume the spectrum is proportional to the energy in the discharge, U



Calculating B(U) gives the maximum operating field.

- Stable operation demands that:

Breakdown events cannot create more damage than they destroy.

A Surface or [sH(BU)<1
Damage ﬁeq
Sz(B, U)

Enhancement Factor, 3



The Model: Local fields + enhancements determine everything.

- If we know Ei.ca, and can calculate B, we can determine rf limits.
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We can calculate all aspects normal rf operation.

- Emax vs. Pulse Len - Emax vs f o - '
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Similarities and differences.

Normal conductors Superconducting rf
* Fracture determines gradients - Field emission determines gradients
* Power thru field emission * Stopped by FE at 4 GV/m
» Copper fractures @ ~8 6V/m * Nb fractures @ ~14 GV/m
- Copper is pure, ~monolayer oxide - Contamination particles, oxides ??
* 55(pB) (secondary dist.) gives limits - Initial conditions si(B) give limit

- Field emission limit can be moved.
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Changing the surface changes field emission.

* Monolayers do it.

* Improvements of 30 - 50% seem possible.

- What is the initial state?
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More data needed on field emitters / breakdown sites,

* What are the properties and effects of oxides on field emitters?
Resistive heating?
Tunneling (Metal-Insulator-Vacuum model)?
Do they pop of f under mechanical stress?
Current carrying Filaments thru insulators?
Switching properties?
Will coatings stick?

* Need data on the work functions of Nb, and impurities, with realistic surfaces.

. and ways to minimize field emission in situ.
» Test monolayer deposition of high ¢ materials on these surfaces.

- Develop system for in-situ monolayer deposition of these materials.
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Summary

- We have a new model of breakdown and gradient limits in normal rf.

- Applying this model to SCRF systems gives some insight to field emission,
Pulsed Power Processing and SCRF gradient limits from field emission.

» Field emission may prevent reaching the surface fields where PPP works.

- It may still be possible to coat the interior surface with monolayers of high ¢
materials to suppress Field Emission and perhaps gain 20 - 50 % in gradient.

- This environment can be understood using Atom Probe Tomography technology.



Measuring field emission.

Current,/ (A), or current density, i (A/m”)
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